Leakage current compensation in networks with single phase servo-drives and frequency inverters

Fix value compensation of operational leakage currents up to 50 mA (RMS)!

Increases the operational safety of the system

Use of a single-phase inverters on the residual current circuit breaker with 30 mA or higher according to DIN VDE 0100-530 possible
Thank you for choosing the LEAKCOMP® 1P leakage current compensation unit from EPA.

If you have any technical questions, please give us a call:
Tel.: +49 (0)6181 – 9704 – 0

For the latest information on this product, visit www.leakcomp.de and www.epa.de.
Contents

1 Important basic information ... 4
 1.1 Publication details .. 4
 1.2 Target group ... 5
 1.3 Liability ... 5
 1.4 General equal treatment ... 5
 1.5 Registered trademarks .. 5
 1.6 Symbols and signal words ... 6
 1.7 Marking on the product .. 7
 1.8 CE mark ... 7
 1.9 Declaration of Conformity ... 8
 1.10 Product description ... 9
 1.11 Delivery contents ... 11
 1.12 Optional accessories ... 11

2 Safety instructions .. 12
 2.1 Intended use of the unit ... 12
 2.2 Requirements for personnel ... 14
 2.3 Responsibility: ... 14
 2.4 Connection .. 15
 2.5 Follow the operating instructions ... 16

3 Technical data ... 17
 3.1 Rating ... 17
 3.2 Dimensions .. 18

4 Function .. 19
 4.1 Functional description .. 19
 4.2 Control terminals (CTR) ... 20
 4.3 Analysis of RCCB utilisation .. 22
 4.4 Comparing leakage current with and without the LEAKCOMP® 1P ... 23

5 Delivery, internal transport, unpacking ... 24
 5.1 Delivery ... 24
 5.2 Internal transport .. 24
 5.3 Unpacking .. 24

6 Storage and transport ... 25
 6.1 Ambient conditions ... 25
 6.2 Storage ... 25
 6.3 Transport ... 25

7 Installation ... 26
 7.1 Safety instructions for installation .. 26
 7.2 Installation conditions .. 27
7.3 Wiring diagram ... 28
7.4 Typical wiring .. 29
8 Startup / operation ... 30
 8.1 LED displays /soft start process .. 30
 8.2 Switching compensation on and off / equalisation ... 30
 8.3 Shutdown ... 31
9 Troubleshooting ... 32
 9.1 Green LED does not come on .. 32
 9.2 Fault during the soft start process ... 32
 9.3 RCCB trips when the unit is switched on ... 32
 9.4 Potential difference between N and PE .. 32
 9.5 The RCCB trips when the motor is carrying current ... 33
 9.6 Fault detection and rectification .. 33
 9.7 Service address .. 34
10 Maintenance .. 34
11 System tests .. 35
12 Repairs .. 35
13 Disposal .. 35
1 Important basic information

1.1 Publication details

Published by: EPA GmbH
Fliederstr. 8
63486 Bruchköbel
Germany
Phone: +49 (0) 6181 – 9704 -0
Fax: +49 (0) 6181 – 9704 -99
Email: info@epa.de
Web: www.epa.de | www.leakcomp.de

Authors: T. Bozem, G. Schmitz, C. Schäfer

Implementation: K. Bonkosch, A. Mayer

Issue number: 2 / 08.2017

Validity of device version: LEAKCOMP® 1P
HW 2.0 / SW 1.2

© EPA GmbH

All rights, including the rights to photomechanical reproduction and storage in electronic media, are reserved by EPA GmbH. Commercial use or distribution of the text, models, drawings and photos used in this product is not permitted. No part of this publication may be reproduced, stored or transferred, distributed or translated in any form or using any medium without prior written permission.
1.2 Target group

This documentation is intended for qualified personnel as defined in IEC 60364.

Qualified personnel are persons who have the appropriate qualifications for the work to be performed during the installation, assembly, start-up and operation of the product.

1.3 Liability

The common names, trade names, descriptions of goods and other designations used in this publication may be legally protected even if not specifically marked as such (for example as trademarks). EPA GmbH accepts no liability or warranty for their free availability.

The illustrations and text were compiled with the utmost care. Nevertheless, errors cannot be excluded.

The publication is provided without guarantee.

The information it contains is provided solely for the purpose of customer information and contains no representations or binding warranties. Binding statements are possible only in response to specific inquiries.

The contents of this instruction manual are accurate at the date of printing. Because it is under continuous development, the manufacturer reserves the right to change the specification of the product and its performance data as well as the contents of this instruction manual, in both technical and commercial terms, without prior notice. The current version is available at www.LEAKCOMP.de or www.EPA.de.

Liability of the company EPA GmbH for any damage resulting from incorrect use of this instruction manual or incorrect, erroneous or inappropriate installation or adjustment is excluded. Interruptions to operation, loss of profit as well as loss of information and data or consequential damages are excluded insofar as liability is not mandatory in accordance with the law on product liability or in cases of intent, gross negligence or breach of fundamental contractual obligations.

1.4 General equal treatment

EPA GmbH is aware of the importance of language with respect to the equal rights of women and men and makes every effort to take this into account. To ensure better readability, however, it was necessary to abstain from the consistent use of differentiated formulations.

1.5 Registered trademarks

Brand names and trademarks are the property of their respective owners and are not generally marked as such in this manual.

The absence of such marking does not mean that a name is free within the meaning of brand and trademark law.
1.6 Symbols and signal words

The following symbols and signal words are used in this documentation to indicate hazards and important information:

<table>
<thead>
<tr>
<th>Symbol/signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ Warning of hazardous electrical voltage</td>
<td></td>
</tr>
<tr>
<td>⚠️ IMPORTANT NOTE</td>
<td>Draws your attention to the handling and impact of safety information.</td>
</tr>
<tr>
<td>⚠️ DANGER</td>
<td>Draws your attention to a hazardous situation that will result in serious injury or death if not avoided.</td>
</tr>
<tr>
<td>⚠️ WARNING</td>
<td>Draws your attention to a hazardous situation that may result in serious injury or death if not avoided.</td>
</tr>
<tr>
<td>⚠️ CAUTION</td>
<td>Draws your attention to a hazardous situation that may result in minor to moderate injury if not avoided.</td>
</tr>
<tr>
<td>🚨 Draws your attention to possible damage to property and other important information.</td>
<td></td>
</tr>
<tr>
<td>🌟 Electrician</td>
<td></td>
</tr>
</tbody>
</table>
1.7 Marking on the product

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED displays</td>
<td></td>
</tr>
<tr>
<td>Green LED: Operating display (LINE ON)</td>
<td></td>
</tr>
<tr>
<td>Red LED: Status display (LOAD START / ON / ERROR)</td>
<td></td>
</tr>
<tr>
<td>Yellow LED: Residual leakage current display ($I_{\text{Leak RMS Indicator}}$)</td>
<td></td>
</tr>
<tr>
<td>Terminal assignment</td>
<td></td>
</tr>
<tr>
<td>Mains connection: PE / N / L (LINE / IN)</td>
<td></td>
</tr>
<tr>
<td>Line in: N / L (LOAD / OUT)</td>
<td></td>
</tr>
<tr>
<td>Control voltage: CTR IN+ / CTR OUT+</td>
<td></td>
</tr>
<tr>
<td>CTR IN- / CTR OUT-</td>
<td></td>
</tr>
<tr>
<td>Compensation potentiometer (Comp. Adj.)</td>
<td></td>
</tr>
<tr>
<td>Space for device designation beneath the EPA logo</td>
<td></td>
</tr>
<tr>
<td>Type plate</td>
<td></td>
</tr>
<tr>
<td>EPA GmbH</td>
<td></td>
</tr>
<tr>
<td>Fleckstr. 8, 49349 Breslau</td>
<td></td>
</tr>
<tr>
<td>Tel.: +49 (0) 6159 9704-0</td>
<td></td>
</tr>
<tr>
<td>Fax: +49 (0) 6159 9704-80</td>
<td></td>
</tr>
<tr>
<td>www.leakcomp.de</td>
<td></td>
</tr>
<tr>
<td>Manufacturer’s details and technical data</td>
<td></td>
</tr>
<tr>
<td>Type: LEAKCOMP® 1P (53001129)</td>
<td></td>
</tr>
<tr>
<td>Rated voltage: 230 V / 50 Hz</td>
<td></td>
</tr>
<tr>
<td>Rated current: 16 A max.</td>
<td></td>
</tr>
<tr>
<td>Freq. range: 12.24 V AC/DC / 5 W</td>
<td></td>
</tr>
<tr>
<td>Compensated: 0.53 mA / 50 Hz</td>
<td></td>
</tr>
<tr>
<td>Temperaturbereich: -10...+40 °C</td>
<td></td>
</tr>
<tr>
<td>Schutzaust.: IP50</td>
<td></td>
</tr>
<tr>
<td>Version: HNV 2.0 / 5SW 1.2</td>
<td></td>
</tr>
</tbody>
</table>

1.8 CE mark

The CE mark is on the device nameplate.

The device complies with the relevant essential requirements of all applicable EU directives.

The declaration of conformity can be found in the following chapter.
1.9 Declaration of Conformity

Konformitätserklärung
Declaration of Conformity

Dokument Nr.: CEK1707003
Document No.:

Hersteller: EPA GmbH, Fliederstraße 8, 63486 Bruchköbel, Germany
Manufacturer: EPA GmbH, Fliederstraße 8, 63486 Bruchköbel, Germany

Produktbezeichnung: Ableitstrom-Festkompensation
Product description: Leakage current fixed-compensation

Produktgruppe: Elektrische Mess-, Steuer-, Regel- und Laborgeräte
Product category: Electrical equipment for measurement, control and laboratory use

Typenbezeichnung: LEAKCOMP® 1P
Type / Model: LEAKCOMP® 1P

Die Produkte sind in Übereinstimmung mit den folgenden Richtlinien:
The products are in accordance with the following directives:

Niederspannungsrichtlinie 2014/35/EU vom 26. Februar 2014
Low-Voltage Directive 2014/35/EC as of February 26, 2014

EMV-Richtlinie 2014/30/EU vom 26. Februar 2014
EM Directive 2014/30/EC as of February 26, 2014

Bei der Fertigung und Prüfung der Produkte wurden die folgenden Normen zur Anwendung gebracht:
The products have been manufactured and tested in accordance with the following standards:

EMC requirements: DIN EN 61326-1:2013-07, VDE 0843-20-1:2013-07

Ort, Datum:
Place and date of issue:
Bruchköbel, 25.07.2017

Unterschrift:
Signature:
Dipl.-Ing. (FH) Thorsten Pernisel
1/2/3

1) Gewählte Stelle zur Ausstellung dieser Erklärung im Namen des Herstellers / Authorized representative to issue this declaration in the name of the manufacturer
2) Gewählte Stelle zur Zusammenstellung der technischen Unterlagen / Authorized representative for compilation of technical documents
3) Funktion: Geschäftsführer / Function: Managing Director
1.10 Product description

There is an increasing use of residual current circuit breakers in industry for personal safety and fire protection. The modern components used in automation technology (such as frequency inverters, RFI filters, switching power supplies, shielded motor cables etc.) generate leakage currents when the system is operating. These so-called "operational" leakage currents are interpreted by the protective devices as differential currents and therefore often lead to unreliable operating states in the residual current device or their complete shutdown. The residual current circuit breaker cannot distinguish between the operational leakage currents and true fault currents.

The EPA LEAKCOMP® 1P is designed for the compensation of capacitive leakage currents with a frequency of 50 Hz.

The LEAKCOMP® 1P leakage current compensation unit is used in electrical plant or machines where single-phase frequency inverters and/or servo controllers are to be operated on RCDs (residual current devices) or RCCBs (residual current circuit breakers).

The LEAKCOMP® 1P compensates for the leakage currents occurring in the system during operation preventing inadvertent or ‘nuisance’ tripping of residual current devices caused by excessively high 50 Hz leakage currents. The device works with all common RCCBs of the types A, F, B and B+. Leakage currents and true fault currents are rigorously differentiated, and there is no compensation for fault currents.

The value of compensation current can be set via a potentiometer on the front panel of the device. The value of the compensation current can be increased by turning the potentiometer clockwise. At optimal compensation, the compensated 50 Hz leakage current approaches zero. If the potentiometer is turned fully anti-clockwise, there is no compensation.

The integrated soft start function prevents the occurrence of leakage current peaks that are caused by the capacitors charging when the inverter is switched on.

The LEAKCOMP® 1P detects if the phase and neutral conductors are transposed during the start-up process and corrects it where necessary.

The LEAKCOMP® 1P has three LED indicators.
The green LED functions as the operating display and indicates the presence of the power supply. The red LED flashes rapidly during the initial stage of the soft start process and then more slowly during the second stage. Once the soft start process is complete, the red LED is lit continuously (operation). If a fault occurs during the soft start process, the red LED flashes (see Troubleshooting chapter). The yellow LED indicates the level of the leakage current. The darker the LED appears, the lower the compensated leakage current. The yellow LED thus assists in the manual adjustment of compensation.

Continued on next page
The control voltage of the LEAKCOMP® 1P can either be supplied via the mains connection (if both jumpers on CTR IN and CTR OUT are fitted) or via a separate power pack on the two CTR IN terminals (for further details see Installation chapter). Both jumpers are fitted as the factory setting, so it is not necessary to have a separate power pack.

⚠️ IMPORTANT NOTE

Along with the 50 Hz leakage currents, leakage currents of other frequencies can also occur that are not compensated by the LEAKCOMP® 1P. EPA also offer a suitable solution for these cases.

For leakage current measurement with analysis of the utilisation of the residual current circuit breaker, we recommend using the leakage current analysis system EPA LEAKWATCH (more information at www.leakwatch.de).
1.11 Delivery contents

Leakage current compensation unit
LEAKCOMP® 1P
EPA Article No.: 5S031129

1.12 Optional accessories

Switching power supply
24V DC, 0.63 A, 15 W
Dimensions: 25 x 93 x 56 mm
Weight: 0.1 kg
EPA Article No.: DIV10604

⚠️ IMPORTANT NOTE

The separate power pack is optional and not essential for the operation of the unit.

The control voltage of the LEAKCOMP® 1P can either be supplied via the internal voltage supply by the jumpers of the CTR IN+ and CTR OUT+ and CTR IN- and CTR OUT-) or via a separate voltage supply to the terminals CTR IN+ and CTR IN- (see Installation chapter for further information).

The works setting is with jumpers fitted between CTR IN+ and CTR OUT+ and between CTR IN- and CTR OUT-, thus using the internal voltage supply unit. It is not necessary to have an additional power pack to operate the device.
2 Safety instructions

2.1 Intended use of the unit

2.1.1 Area of application

There is an increasing use of residual current circuit breakers in industry for personal safety and fire protection. The modern components used in automation technology (such as frequency inverters, RFI filters, switching power supplies, shielded motor cables etc.) generate leakage currents when the system is operating. These so-called "operational" leakage currents are interpreted by the protective devices as differential currents and therefore often lead to unreliable operating states in the residual current device or their complete shutdown. The residual current circuit breaker cannot distinguish between the operational leakage currents and true fault currents.

The EPA LEAKCOMP® 1P is designed for the compensation of capacitive leakage currents with a frequency of 50 Hz.

The LEAKCOMP® 1P leakage current compensation unit is used in electrical plant or machines where single-phase frequency inverters and/or servo controllers are to be operated on RCDs (residual current devices) or RCCBs (residual current circuit breakers).

The LEAKCOMP® 1P compensates for the leakage currents occurring in the system during operation preventing inadvertent or ‘nuisance’ tripping of residual current devices caused by excessively high 50 Hz leakage currents. The device works with all common RCCBs of the types A, F, B and B+. Leakage currents and true fault currents are rigorously differentiated, and there is no compensation for fault currents.

NOTE

Despite compensation, high leakage currents outside the frequency of 50 Hz, or with a very high amplitude can still trigger the residual current circuit breaker.

EPA also provide corresponding solutions for these cases (see LEAKCOMP® HP at www.leakcomp.de and DAR Leakage current reduction filters at www.epa.de).

Continued on next page
Inadmissible operating conditions

⚠️ **CAUTION**

The LEAKCOMP® 1P must only be used under the conditions and for the purposes for which it was designed (see also Intended use chapter).

Particular attention should be paid to the safety instructions and the technical data setting out the ambient conditions.

Operational safety is not guaranteed in the event of modification or improper use.

High voltage differences between the neutral conductor and the protective earth conductor can overload or destroy the device.

Strong electromagnetic fields can affect the function and measuring accuracy of the device.

External mechanical loads are not allowed.

⚠️ **IMPORTANT NOTE**

The device is not suitable for:

- The reduction of 150 Hz operational leakage currents on three-phase devices (servo or frequency inverters),
- The reduction of operational leakage currents for the purpose of compliance with maximum permitted limits for leakage currents (e.g. 3.5 mA limit for mobile devices),
- The reduction of leakage currents outside the 50 Hz frequency,
- The reduction of leakage currents higher than those specified for the device,
- Use on AC-type residual current circuit breakers (prohibited in Germany!),
- Systems/machines with power regeneration
- Potentially explosive atmospheres.
2.2 Requirements for personnel

⚠️ **WARNING**

Installation and work on the **LEAKCOMP® 1P** may only be carried out by qualified personnel. Qualified personnel as defined by this instruction manual are electricians who are familiar with the installation, assembly, start-up and operation of the device, with the hazards involved, and who, based on their technical training, are also familiar with the relevant standards and provisions. Repairs may only be carried out by authorised repair centres. Unauthorised tampering can lead to property damage and will void the warranty provided by EPA.

2.3 Responsibility:

⚠️ **WARNING**

Electronic devices are never fail-safe. The installer and/or operator of the machine or system is responsible for ensuring that the system/machine is restored to a safe state if the device fails or the residual current device is tripped.

The safety requirements for electrical controllers are set out in DIN EN 60204-1; VDE 0113-1 "Safety of machinery" in the section titled "Electrical equipment of machines". These provisions ensure the safety of persons and machines as well as the maintenance of the functional capability of the machine or system and must be observed.

Continued on next page
2.4 Connection

⚠️ **WARNING of hazardous electrical voltage**
To avoid electric shock, take appropriate precautions.
Follow the accident prevention regulations for electrical systems and equipment when carrying out all work.

⚠️ **WARNING**
The internal control voltage at the CTR OUT terminals is approximately 12 V DC and is exclusively intended for the purpose of controlling the LEAKCOMP® 1P. It must not be used for any other purpose!
The potential of the control voltage of ±12V DC is on level N of the mains voltage. For safety reasons, the relay contacts must therefore have a dielectric strength of at least 230 V AC, and the connecting cables including the jumpers at CTR OUT- and CTR IN- must be insulated accordingly.

⚠️ **CAUTION**
The device must be supplied with the voltage specified in the technical data. Higher voltages higher can destroy the device.
Surge voltages between the terminals can destroy the device.
A higher than specified current can destroy the device. Suitable overload protection must be provided.
The device must be fixed firmly into place while the power supply is disconnected and no parts are live.

⚠️ **IMPORTANT NOTE**
The LEAKCOMP® 1P must have a fixed, low-impedance connection with the protective earth conductor (PE).
The LEAKCOMP® 1P must only be used in TN-S networks.
2.5 Follow the operating instructions

⚠️ IMPORTANT NOTE

Please read this manual carefully. It contains important information about the installation and operation of the LEAKCOMP® 1P.

The LEAKCOMP® 1P has been subjected to extensive testing and left the factory in a technically and operationally safe condition. To maintain this condition, the user must follow the safety instructions in this manual.

We assume no liability for damage caused by failure to follow these instructions.

This manual is an integral part of the product and is valid only for the LEAKCOMP® 1P leakage current compensation unit manufactured by EPA GmbH.

Please pass this manual on to the system operator / end customer / service technician so that it is available when required.

Keep these operating instructions and all other applicable documents in a safe place to ensure that they are available when required.

This is a translation of the original German instruction manual.
3 Technical data

3.1 Rating

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network configuration</td>
<td>TN-S system (L / N / PE)</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>230 VAC ±10%, single phase</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 Hz ± 1%</td>
</tr>
<tr>
<td>Max. ampere capacity</td>
<td>16 A (max. overload protection: 16A, B characteristic)</td>
</tr>
<tr>
<td>Compensation frequency</td>
<td>50 Hz (capacitive)</td>
</tr>
<tr>
<td>Compensation current</td>
<td>0..50 mA RMS (adjustable via potentiometer)</td>
</tr>
<tr>
<td>Power loss</td>
<td><5 VA</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operation: +10..40ºC, Storage: -25...+55ºC/ transport: -25...+70ºC</td>
</tr>
<tr>
<td>Mounting / fitting</td>
<td>on DIN EN 50022 mounting rail, position as required</td>
</tr>
<tr>
<td>Connections</td>
<td>Terminal assignment</td>
</tr>
<tr>
<td></td>
<td>Mains connection: PE / N / L (LINE / IN)</td>
</tr>
<tr>
<td></td>
<td>Load connection: N / L (LOAD / OUT)</td>
</tr>
<tr>
<td></td>
<td>Internal control voltage: CTR IN+ / CTR OUT+</td>
</tr>
<tr>
<td></td>
<td>CTR IN- / CTR OUT-</td>
</tr>
<tr>
<td></td>
<td>Max. cable cross-section: 2x 2.5 mm² solid wire</td>
</tr>
<tr>
<td></td>
<td>2x 1.5 mm² flexible with sleeve</td>
</tr>
<tr>
<td></td>
<td>Tightening torque</td>
</tr>
<tr>
<td></td>
<td>max. 0.8 Nm</td>
</tr>
<tr>
<td>External control voltage</td>
<td>24 V AC / DC (±10%) max. 5 mA</td>
</tr>
<tr>
<td>Dimensions</td>
<td>L: 73.5 mm W: 45 mm D: 119 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 300 g</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP20</td>
</tr>
<tr>
<td>Direct contact protection</td>
<td>DGUV V3 (BGV A3)</td>
</tr>
<tr>
<td>Flammability</td>
<td>UL94 V-0 / IEC 60707 BH 2-30</td>
</tr>
<tr>
<td>Displays</td>
<td>LED displays</td>
</tr>
<tr>
<td></td>
<td>Green LED: Operating display (LINE ON)</td>
</tr>
<tr>
<td></td>
<td>Red LED: Status display (LOAD START / ON / ERROR)</td>
</tr>
<tr>
<td></td>
<td>Yellow LED: Residual leakage current display ((\text{I}_{\text{Leak RMS}}) Indicator)</td>
</tr>
<tr>
<td>Setting options</td>
<td>Compensation current adjustable via potentiometer</td>
</tr>
<tr>
<td>EMC</td>
<td>EN 61326-1, EN 55011 Class A (Industry)</td>
</tr>
<tr>
<td>Conformity</td>
<td>CE, RoHS (2011/65/EU)</td>
</tr>
</tbody>
</table>

1) also available as 60 Hz version 2) optional; supplied with factory-installed internal control voltage
3.2 Dimensions

All dimensions are specified in mm.

CAD files can be downloaded at www.epa.de.
Function

4 Function

4.1 Functional description

The LEAKCOMP® 1P detects operational leakage currents with a frequency of 50 Hz generated by single-phase frequency inverters and/or SERVO inverters and compensates them in a special process protected by patent law.

The RCCB is thereby relieved of 50-Hz leakage currents and the triggering of RCCBs in fault-free installations is specifically prevented. True fault currents continue to be detected by the residual current circuit breaker in accordance with its specifications and operational safety is maintained.

The value of compensation current can be set via a potentiometer on the front panel of the device. The value of the compensation current can be increased by turning the potentiometer clockwise. At optimal compensation, the compensated 50 Hz leakage current approaches zero. If the potentiometer is turned fully anticlockwise, there is no compensation.

The integrated soft start function prevents the occurrence of leakage current peaks that are caused by the capacitors charging when the inverter is switched on.

The LEAKCOMP® 1P detects if the phase and neutral conductors are transposed during the start-up process and corrects it where necessary.

The LEAKCOMP® 1P has three LED indicators.

The green LED functions as the operating display and indicates the presence of the power supply. The red LED flashes rapidly during the initial stage of the soft start process and then more slowly during the second stage. Once the soft start process is complete, the red LED is lit continuously (operation). If a fault occurs during the soft start process, the red LED flashes (see Troubleshooting chapter). The yellow LED indicates the level of the leakage current. The darker the LED appears, the lower the compensated leakage current. The yellow LED thus assists in the manual adjustment of compensation.

The LEAKCOMP® 1P offers the possibility of switching the downstream load on and off via the CTR IN+ and CTR IN- control inputs by applying a control voltage (in the extra low voltage range) through a PLC, as with a standard contactor. Unlike when using a contactor, during every switching operation the complete soft start cycle is gone through and the leakage current is constantly compensated. The control voltage of the LEAKCOMP® 1P can either be supplied via the mains connection (if both jumpers on CTR IN and CTR OUT are fitted) or via a separate power pack on the two CTR IN terminals. The factory setting has jumpers fitted to the CTR terminals, so an external control voltage is not essential. For more information, refer to Installation and Control terminals chapters).

⚠️ NOTE

Along with 50 Hz leakage currents, leakage currents of other frequencies can also occur that are not compensated by the LEAKCOMP® 1P. EPA also provide corresponding solutions for these cases (see LEAKCOMP® HP at www.leakcomp.de and DAR Leakage current reduction filters at www.epa.de).
4.2 Control terminals (CTR)

The LEAKCOMP® 1P offers the possibility of switching the downstream load on and off via the CTR IN+ and CTR IN- control inputs by applying a control voltage (in the extra low voltage range) through a PLC, as with a standard contactor.

Unlike when using a contactor, during every switching operation the complete soft start cycle is gone through and the leakage current is constantly compensated.

⚠️ **NOTE**

The factory setting has jumpers fitted to the CTR terminals, so an external control voltage is not essential (see 4.2.3).

The following configurations are possible:

4.2.1 External control voltage

- Terminals CTR OUT+ and CTR OUT- open
- Terminal CTR IN+ at external control voltage plus (+)
- Terminal CTR IN- at external control voltage minus (-)

When the mains voltage is applied, the device first goes into standby mode (green LED on, red LED off, load double-pole isolated from mains, no compensation current).

When the control voltage is applied, the start-up process is initiated (cf. description). The control voltage must remain applied until there is a wish to switch off the load. When the control voltage is switched off, an orderly shutdown of the load is carried out.

To prevent a triggering of the RCCB, first the phase conductor (L) is disconnected, then the neutral conductor (N).

This procedure can be repeated several times. It is not necessary to disconnect the LEAKCOMP® 1P from the mains to perform another soft start. A maximum of 60 cycles per hour are permitted with a total charging capacity of 6800 μF (total of all DC link capacities).

The control inputs CTR IN are completely potential-free.

The control voltage can range between 12 V and 36 V DC (recommended 24 V DC). The maximum control current is 5 mA.
4.2.2 **Control with an external relay**

- Terminals CTR OUT+ and CTR IN+ on the centre and normally open contact of the control relay
- Terminals CTR OUT- and CTR IN-connected by an insulated jumper

If there is no DC control voltage available, the internal control voltage of the LEAKCOMP® 1P can be used in conjunction with a free relay contact.

The operating characteristics of the LEAKCOMP® 1P correspond to those when using an external control voltage.

⚠️ **WARNING**

The internal control voltage at the CTR OUT terminals is approximately 12 V DC and is exclusively intended for the purpose of controlling the LEAKCOMP® 1P. It must not be used for any other purpose!

The potential of the control voltage of ±12V DC is on level N of the mains voltage. For safety reasons, the relay contacts must therefore have a dielectric strength of at least 230 V AC, and the connecting cables including the jumpers at CTR OUT- and CTR IN- must be insulated accordingly!

4.2.3 **Auto start (factory setting)**

- Terminals CTR OUT+ and CTR IN+ connected by an insulated jumper
- Terminals CTR OUT- and CTR IN- connected by an insulated jumper

When the mains voltage is applied, the soft start cycle described above is executed after a pause of approximately one second.
4.3 Analysis of RCCB utilisation

For leakage current measurement with an analysis of the RCCB utilisation, we recommend using the leakage current analysis system EPA LEAKWATCH (more information at www.leakwatch.de).
4.4 Comparing leakage current with and without the LEAKCOMP® 1P

Examples of the frequency components of the leakage current (Fourier analysis with EPA LEAKWATCH) measured with a standard, commercially available single-phase inverter.

4.4.1 Leakage current without the LEAKCOMP® 1P

The tripping threshold of the 30 mA RCCB is exceeded at 50 Hz. ➔ The RCCB detects an excessively high differential current and trips.

4.4.2 Leakage current with the LEAKCOMP® 1P

The 50 Hz leakage currents are compensated with the aid of the LEAKCOMP® 1P. The tripping threshold 30 mA RCCB is thereby significantly undershot thus reducing the
utilisation of the RCCB.
→ The RCCB is relieved of 50 Hz leakage currents and does not trip.

5 Delivery, internal transport, unpacking

5.1 Delivery
For the components included in delivery, please refer to the section titled "Delivery contents".
All LEAKCOMP® 1P have been subjected to extensive testing and have left the factory in a technically and operationally safe condition.

⚠️ WARNING
Read the operating instructions carefully before use.

5.2 Internal transport
The device must be protected against external influences for transport (knocks, vibration, temperature, dirt etc.). The transport conditions are set out in the section titled "Storage and transport".

5.3 Unpacking

⚠️ IMPORTANT NOTE
Check the unit for external damage.
Please keep the original packaging and operating instructions.
6 Storage and transport

6.1 Ambient conditions

<table>
<thead>
<tr>
<th></th>
<th>Storage</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>-25°C to +55°C (EN 60721-3-1, 1K3)</td>
<td>-25°C to +70°C (EN 60721-3-1, 2K3)</td>
</tr>
<tr>
<td>Moisture and humidity</td>
<td>Condensation not allowed, relative humidity ≤ 80%</td>
<td></td>
</tr>
<tr>
<td>Soiling</td>
<td>Pollution degree 2 (EN 50178)</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ CAUTION

Damage possible
Risk of damage to the unit from improper storage or transport.

NOTE
If the unit has been transported at extreme temperatures, it requires an acclimatisation period of at least 2 hours before operation.

Strong vibrations, knocks, shocks and soiling (liquids and solid foreign bodies) must be avoided at all times as they can cause damage to the unit.

6.2 Storage

Always ensure that the LEAKCOMP® 1P is stored in a correct and proper manner.
The unit must be stored in a dry, enclosed space.

6.3 Transport

Where possible, transport the LEAKCOMP® 1P properly in its original packaging.
The packaging included in delivery can be used for transport.
7 Installation

7.1 Safety instructions for installation

⚠️ DANGER

Warning of hazardous electrical voltage!

Take appropriate precautions to avoid electric shocks.

⚠️ DANGER

The LEAKCOMP® 1P must only be installed by an authorised and qualified specialist who is familiar with the relevant safety provisions.

Work in hazardous proximity to electrical systems should only be performed under the instruction of a responsible electrician and not carried out alone.

Follow the accident prevention regulations for electrical systems and equipment when carrying out all work.

Installation should only be carried while the power supply is disconnected and no parts in the system are live.

The LEAKCOMP® 1P is designed for mounting on a rail in accordance with DIN 50022. A minimum distance of approx. 20 mm from adjacent assemblies should be maintained (heat).

The device must be firmly installed in the distribution board.

The housing of the LEAKCOMP® 1P must not be opened.

⚠️ WARNING

High load currents can overload or destroy the sensitive hardware.

The level of the leakage currents to be compensated should not exceed the value indicated in the specification.

Ideally, the LEAKCOMP® 1P should be positioned directly behind the residual current circuit breaker.

The protective conductor (PE) must be connected to the protective conductor terminal of the device with a fixed, low-impedance connection.

When tightening the terminals, the maximum tightening torque of 0.8 Nm must not be exceeded.
7.2 Installation conditions

⚠️ WARNING
Follow the safety instructions in the section titled "Safety" and note the technical data in the section titled "Technical data".

7.2.1 Operating conditions
The LEAKCOMP® 1P operates independently of position and is designed for mounting on a top-hat rail in accordance with DIN 50022.

It is designed for single-phase TN-S networks (L/N/PE).

Ambient conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>+10°C to +40°C</td>
</tr>
<tr>
<td>Moisture and humidity</td>
<td>Without condensation, relative humidity ≤ 80%</td>
</tr>
<tr>
<td>Installation altitude</td>
<td>≤ 2000 m above sea level</td>
</tr>
<tr>
<td>Soiling</td>
<td>Pollution degree 2 (EN 50178)</td>
</tr>
</tbody>
</table>

7.2.2 Connection conditions

The separate power pack is optional and not essential for the operation of the unit.

The control voltage of the LEAKCOMP® 1P can either be supplied via the internal voltage supply by the jumpers of the CTR IN+ and CTR OUT+ and CTR IN- and CTR OUT-) or via a separate voltage supply to the terminals CTR IN+ and CTR IN- (see Installation chapter for further information).

The works setting is with jumpers fitted between CTR IN+ and CTR OUT+ and between CTR IN- and CTR OUT-, thus using the internal voltage supply unit. It is not necessary to have an additional power pack to operate the device.

⚠️ IMPORTANT NOTE

Ideally, the LEAKCOMP® 1P should be positioned directly behind the residual current circuit breaker.

The maximum tightening torque for the terminals is 0.8 Nm.

Continued on next page
7.3 Wiring diagram

Schematic representation of the wiring of the LEAKCOMP® 1P with an RCCB.
7.4 Typical wiring

LEAKCOMP® 1P with an RCCB and a frequency inverter.
8 Start-up / Operation

8.1 LED displays / Soft start process

The LEAKCOMP® 1P has three LED indicators.

The green LED functions as the operating display and indicates the presence of the mains supply or the supply voltage of the LEAKCOMP® 1P.

When the supply voltage is switched on, the device first carries out a self-test, that detects and if necessary corrects the correct assignment of the phase and neutral conductors.

The connected loads are then switched on by the multistage soft start process. The red LED flashes rapidly during the initial stage of the soft start process and then more slowly during the second stage. Once the soft start process is complete, the red LED is lit continuously (operation).

If a fault occurs during the soft start process, the red LED flashes (see Troubleshooting chapter).

The yellow LED indicates the level of the leakage current. The darker the LED appears, the lower the compensated leakage current. The yellow LED thus assists in the manual adjustment of compensation.

IMPORTANT NOTE

The connected loads are only switched on after the self-test has been successfully completed.

Before the start-up of the LEAKCOMP® 1P connected to one or more frequency/servo inverters, the compensation current on the LEAKCOMP® 1P must be equalised via the potentiometer.

8.2 Switching compensation on and off / equalisation

The value of compensation current can be set via a potentiometer on the front panel of the device.

The value of the compensation current can be increased from 0 to 50 mA by turning the potentiometer clockwise.

At optimal compensation; the compensated 50 Hz leakage current approaches zero.

If the potentiometer is turned fully anti-clockwise, there is no compensation.

Continued on next page
8.3 Shutdown

In order to shut down the LEAKCOMP® 1P, it is necessary to interrupt the control voltage supply at the terminals CTR IN+ and CTR IN- or to switch off the power supply via the LINE / IN terminals.

⚠️ NOTE

Interrupting the control voltage of the LEAKCOMP® 1P leads to the loads connected via the LOAD / OUT terminals being switched off.
9 Troubleshooting

9.1 Green LED does not come on

The green LED functions as the operating display and indicates the presence of the mains supply or the supply voltage of the LEAKCOMP® 1P.

9.2 Fault during the soft start process

When the supply voltage is switched on, the device first carries out a self-test, that detects, and where necessary corrects the assignment of the phase and neutral conductors. The connected loads are then switched on by the multistage soft start process. The red LED flashes rapidly during the initial stage of the soft start process and then more slowly during the second stage. Once the soft start process is complete, the red LED is lit continuously (operation).

If a fault occurs during the soft start process, the red LED flashes and the load is not switched on.

9.3 RCCB trips when the unit is switched on

If the LEAKCOMP® 1P is connected to one or more frequency/servo inverters, the compensation current on the LEAKCOMP® 1P must be equalised via the potentiometer.

The yellow LED indicates the level of the leakage current. The darker the LED appears, the lower the compensated leakage current. The yellow LED thus assists in the manual adjustment of compensation.

The RCCB may trip if the compensation current is either too high or too low. An optimal adjustment of the LEAKCOMP® 1P is the precondition for the safe operation of one or more frequency or servo inverters connected to the RCCB.

9.4 Potential difference between N and PE

Please measure the voltage between the neutral and protective earth conductors.

If there is voltage between the neutral and protective earth conductors, there is an installation problem with the system wiring that must be dealt with before the starting the LEAKCOMP® 1P.

This does not generally cause a defect in the device.

⚠️ WARNING

In the event of a permanently raised voltage (>10 V) between the neutral and protective earth conductors or terminals N and COMP, a defect may occur in the LEAKCOMP® 1P.

Continued on next page
9.5 **The RCCB trips when the motor is carrying current.**

This could be caused by a drive system that is generating very high leakage current values in the frequency range above 2 kHz (usually due to long motor leads). These high-frequency leakage currents could lie above the trip threshold of the RCCB.

In this case, we recommend conducting a leakage current analysis to determine the cause (for example, with the help of EPA LEAKWATCH), and to assess the effectiveness of remedial measures.

9.6 **Fault detection and rectification**

<table>
<thead>
<tr>
<th>Fault/error message</th>
<th>Possible cause(s)</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCCB trips, despite the use of the LEAKCOMP® 1P.</td>
<td>Wiring error – neutral conductor tapped before residual current circuit breaker</td>
<td>Check wiring and tap N after residual current circuit breaker</td>
</tr>
<tr>
<td></td>
<td>Compensation current not optimally adjusted</td>
<td>Adjust compensation current with the potentiometer and measure the residual current</td>
</tr>
<tr>
<td></td>
<td>Fault current due to insulation fault</td>
<td>Correct insulation fault</td>
</tr>
<tr>
<td></td>
<td>High leakage current at 150 Hz</td>
<td>Compensate leakage current of three-phase inverter (e.g. LEAKCOMP® HP)</td>
</tr>
<tr>
<td></td>
<td>External EMC filter/mains filter with high leakage current</td>
<td>Use low leakage current or 4-wire mains filter (e.g. EPA NF-KC-LL, NF-4)</td>
</tr>
<tr>
<td></td>
<td>Network asymmetries due to power regeneration by inverters (energy recovery)</td>
<td>Use an additional line reactor (e.g. EPA3N)</td>
</tr>
<tr>
<td></td>
<td>High leakage currents in the range of the inverter switching frequency</td>
<td>Use additional mains filters to reduce high-frequency leakage currents (e.g. EPA NF-DAR, NF-KC-DAR)</td>
</tr>
<tr>
<td></td>
<td>Leakage current too high (with unknown frequency)</td>
<td>Carry out a leakage current analysis (e.g. with EPA LEAKWATCH)</td>
</tr>
<tr>
<td></td>
<td>Green LED off</td>
<td>Check the power supply at the LINE IN terminal</td>
</tr>
<tr>
<td>Fault/error message</td>
<td>Possible cause(s)</td>
<td>Remedy</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Red and yellow LEDs remain unlit (only the green LED is lit)</td>
<td>No control voltage</td>
<td>Check the wiring at the CTR terminals</td>
</tr>
<tr>
<td></td>
<td>Jumpers at CTR terminals loose or missing</td>
<td>Insert or tighten jumpers at CTR terminals</td>
</tr>
<tr>
<td>Yellow LED shines brightly</td>
<td>Compensation current is too low</td>
<td>Turn the potentiometer clockwise</td>
</tr>
<tr>
<td></td>
<td>Compensation current is too high</td>
<td>Turn the potentiometer anticlockwise</td>
</tr>
<tr>
<td>Red LED is flashing</td>
<td>Fault during the soft start process</td>
<td>Check wiring; Load with unusual leakage current</td>
</tr>
</tbody>
</table>

9.7 Service address

EPA GmbH
Fliederstr. 8
63486 Bruchköbel
Germany
Phone: +49 (0) 6181 – 97 04 0
Fax: +49 (0) 6181 – 97 04 99
Email: info@epa.de
Web: www.epa.de

10 Maintenance

When used as intended, the LEAKCOMP® 1P is maintenance-free.

⚠️ IMPORTANT NOTE

Inspection or maintenance of the LEAKCOMP® 1P should only be carried out by qualified electricians.

Unless explicitly described in these operating instructions, modifications to the device may only be carried out by EPA or persons authorised by EPA.

Always follow the accident prevention regulations.
11 System tests

⚠️ WARNING
These tests must be carried out by a qualified electrician who is competent to carry out the tests, has experience of testing and possesses a knowledge based on the testing of comparable systems.

For the initial test of electrical systems and stationary equipment, the requirements of the standard DIN VDE 0100-600 "Low-voltage electrical installations – Part 6: Verification" must be met.

For the repeat test of electrical systems and stationary equipment, the requirements of the standard DIN VDE 0105-100 "Operation of electrical installations – Part 100: General requirements" must be met.

12 Repairs

⚠️ IMPORTANT NOTE
The LEAKCOMP® 1P can be damaged or destroyed if the instructions are not followed.

Repairs may only be carried out by EPA or repair centres authorised by EPA. Unauthorised tampering can lead to property damage and will void the warranty provided by EPA.

The housing should not be opened.

13 Disposal

⚠️ IMPORTANT NOTE
The LEAKCOMP® 1P is a device intended for commercial use. These devices should not be disposed of at municipal collection points for electrical appliances. The devices contain electronic components and must be disposed of properly.

If you have any questions, please contact us.
Brands – business names – work titles
Company and product names used by EPA are used only for labeling and are mentioned without taking into account any commercial protection right; the lack of the marking of a possibly existent commercial protection right does not mean that the used company and/or product name is available. The EPA logo is a registered trademark for the EPA GmbH.
All rights reserved. Technical changes without notice.